Dynamic Regulation of Oct1 during Mitosis by Phosphorylation and Ubiquitination

نویسندگان

  • Jinsuk Kang
  • Ben Goodman
  • Yixian Zheng
  • Dean Tantin
چکیده

BACKGROUND Transcription factor Oct1 regulates multiple cellular processes. It is known to be phosphorylated during the cell cycle and by stress, however the upstream kinases and downstream consequences are not well understood. One of these modified forms, phosphorylated at S335, lacks the ability to bind DNA. Other modification states besides phosphorylation have not been described. METHODOLOGY/PRINCIPAL FINDINGS We show that Oct1 is phosphorylated at S335 in the Oct1 DNA binding domain during M-phase by the NIMA-related kinase Nek6. Phospho-Oct1 is also ubiquitinated. Phosphorylation excludes Oct1 from mitotic chromatin. Instead, Oct1(pS335) concentrates at centrosomes, mitotic spindle poles, kinetochores and the midbody. Oct1 siRNA knockdown diminishes the signal at these locations. Both Oct1 ablation and overexpression result in abnormal mitoses. S335 is important for the overexpression phenotype, implicating this residue in mitotic regulation. Oct1 depletion causes defects in spindle morphogenesis in Xenopus egg extracts, establishing a mitosis-specific function of Oct1. Oct1 colocalizes with lamin B1 at the spindle poles and midbody. At the midbody, both proteins are mutually required to correctly localize the other. We show that phospho-Oct1 is modified late in mitosis by non-canonical K11-linked polyubiquitin chains. Ubiquitination requires the anaphase-promoting complex, and we further show that the anaphase-promoting complex large subunit APC1 and Oct1(pS335) interact. CONCLUSIONS/SIGNIFICANCE These findings reveal mechanistic coupling between Oct1 phosphorylation and ubquitination during mitotic progression, and a role for Oct1 in mitosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated Golgi reassembly

In mammalian cells, the inheritance of the Golgi apparatus into the daughter cells during each cycle of cell division is mediated by a disassembly and reassembly process, and this process is precisely controlled by phosphorylation and ubiquitination. VCIP135 (valosin-containing protein p97/p47 complex-interacting protein, p135), a deubiquitinating enzyme required for p97/p47-mediated postmitoti...

متن کامل

Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates

Ordered progression of mitosis requires precise control in abundance of mitotic regulators. The anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase plays a key role by directing ubiquitin-mediated destruction of targets in a temporally and spatially defined manner. Specificity in APC/C targeting is conferred through recognition of substrate D-box and KEN degrons, while the specificity...

متن کامل

Mitotic regulation of the human anaphase-promoting complex by phosphorylation.

The anaphase-promoting complex (APC) or cyclosome is a ubiquitin ligase that initiates anaphase and mitotic exit. APC activation is thought to depend on APC phosphorylation and Cdc20 binding. We have identified 43 phospho-sites on APC of which at least 34 are mitosis specific. Of these, 32 sites are clustered in parts of Apc1 and the tetratricopeptide repeat (TPR) subunits Cdc27, Cdc16, Cdc23 a...

متن کامل

Phosphorylation of AIB1 at Mitosis Is Regulated by CDK1/CYCLIN B

BACKGROUND Although the AIB1 oncogene has an important role during the early phase of the cell cycle as a coactivator of E2F1, little is known about its function during mitosis. METHODOLOGY/PRINCIPAL FINDINGS Mitotic cells isolated by nocodazole treatment as well as by shake-off revealed a post-translational modification occurring in AIB1 specifically during mitosis. This modification was sen...

متن کامل

Cyclin-dependent Kinase 1 (CDK1)-mediated Phosphorylation of Enhancer of Zeste 2 (Ezh2) Regulates Its Stability*

The H3K27 histone methyltransferase, Ezh2 (enhancer of zeste 2), is a Polycomb group protein that plays important roles in many biological processes including cellular differentiation, stem cell biology, and cancer development. Up-regulation of Ezh2 is observed in various human cancers consistent with its role in cell proliferation. Thus, understanding the regulation of Ezh2 may reveal how it c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011